首页 | 本学科首页   官方微博 | 高级检索  
     


Flow birefringence of polymer melts: Application to the investigation of time dependent rheological properties
Authors:F. H. Gortemaker  M. G. Hansen  B. de Cindio  H. M. Laun  H. Janeschitz-Kriegl
Affiliation:(1) Laboratory of Physical Chemistry, Delft University of Technology, Julianalaan 136, Delft 8, The Netherlands;(2) General Electric Research Laboratories, Schenectady, N. Y., USA;(3) Istituto di Principi di Ingegneria Chimica, University of Naples, Italy;(4) Meß- und Prüflaboratorium, BASF Aktiengesellschaft, D-6700 Ludwigshafen/Rhein, BRD
Abstract:Summary Transient stresses including normal stresses, which are developed in a polymer melt by a suddenly imposed constant rate of shear, are investigated by mechanical measurement and, indirectly, with the aid of the flow birefringence technique. For the latter purpose use is made of the so-called stress-optical law, which is carefully checked.It appears that the essentially linear model of the ldquorubberlike liquidrdquo, as proposed byLodge, is capable of describing the behaviour of polymer melts rather well, if the applied total shear does not exceed unity. In order to describe also steady state values of the stresses successfully, one should extend measurements to extremely low shear rates.These statements are verified with the aid of a method which was originally designed bySchwarzl andStruik for the practical calculation of interrelations between linear viscoelastic functions. In the present paper dynamic shear moduli are used as reference functions.
Zusammenfassung Mit der Zeit anwachsende Spannungen, darunter auch Normalspannungen, wie sie sich nach dem plötzlichen Anlegen einer konstanten Schergeschwindigkeit in einer Polymerschmelze entwickeln, werden mit Hilfe mechanischer Messungen und indirekt mit Hilfe der Strömungsdoppelbrechung untersucht. Für den letzteren Zweck wird das sogenannte spannungsoptische Gesetz herangezogen, dessen Gültigkeit sorgfältig überprüft wird.Es ergibt sich, daß das im Wesen lineare Modell der gummiartigen Flüssigkeit, wie es vonLodge vorgeschlagen wurde, sich recht gut zur Beschreibung des Verhaltens von Polymerschmelzen eignet, solange der im ganzen angelegte Schub den Wert Eins nicht überschreitet. Um auch stationäre Werte der Spannungen in die Beschreibung erfolgreich einzubeziehen, sollte man die Messungen bis zu extrem niedrigen Schergeschwindigkeiten ausdehnen.Die gemachten Feststellungen werden mit Hilfe einer Methode verifiziert, die vonSchwarzl undStruik ursprünglich für die praktische Berechnung von Beziehungen zwischen Zustandsfunktionen entwickelt wurde, die dem linear viskoelastischen Verhalten entsprechen. In der vorliegenden Veröffentlichung dienen die dynamischen Schubmoduln als Bezugsfunktionen.

aT shift factor - Bij Finger deformation tensor - C stress-optical coefficient, (m2/N) - f (pjl) undetermined scalar function - G shear modulus, (N/m2) - G(t) time dependent shear modulus, (N/m2) - Gprime(ohgr) shear storage modulus, (N/m2) - GPrime(ohgr) shear loss modulus, (N/m2) - GPrimer reduced shear storage modulus, (N/m2) - GPrimer reduced shear loss modulus, (N/m2) - H(tau) shear relaxation time spectrum, (N/m2) - k Boltzmann constant, (Nm/°K) - nik refractive index tensor - p undetermined hydrostatic pressure, (N/m2) - pij,pik stress tensor, (N/m2) - p21 shear stress, (N/m2) - p11p22 first normal stress difference, (N/m2) - p22p33 second normal stress difference, (N/m2) - q shear rate, (s–1) - t, tprime time, (s) - T absolute temperature, (°K) - T0 reference temperature, (°K) - x the ratiot/tau - x position vector of a material point after deformation, (m) - xprime position vector of a material point before deformation, (m) - agr0,agr1 constants in eq. [37] - beta0,beta1 constants in eq. [37] - gamma shear deformation - gamma(t, tprime) time dependent shear deformation - deltaij unity tensor - Deltan flow birefringence in the 1–2 plane - eegr(q) non-Newtonian shear viscosity, (N s/m2) - eegr*(ohgr) complex dynamic viscosity, (N s/m2) - |eegr*(ohgr)| absolute value of complex dynamic viscosity, (N s/m2) - eegrprime(ohgr) real part of complex dynamic viscosity, (N s/m2) - eegrPrime(ohgr) imaginary part of complex dynamic viscosity, (N s/m2) - mgr(t — tprime) ldquomemory functionrdquo, (N/m2 · s) - v number of effective chains per unit of volume, (m–3) - rgr temperature dependent density, (kg/m3) - rgr0 density at reference temperatureT0, (kg/m3) - tau relaxation time, (s) - tauprime integration variable, (s) - phgr(x) approximate intensity function - phgr1(x) error function - chi extinction angle - chim orientation angle of the stress ellipsoid - ohgr circular frequency, (s–1) - 1 direction of flow - 2 direction of the velocity gradient - 3 indifferent direction - t time dependenceThe present investigation has been carried out under the auspices of the Netherlands Organization for the Advancement of Pure Research (Z. W. O.).North Atlantic Treaty Organization Science Post Doctoral Fellow.Research Fellow, Delft University of Technology.With 11 figures and 2 tables
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号