首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of different types of pseudopotentials on study of electronic dispersion for graphene and a (5,5) SWCNT
Authors:B Khoshnevisan  ZS Tabatabaean
Institution:(1) Department of Physics, University of Kashan, Kashan, 87317-51167, Iran
Abstract:We study the electronic dispersion for a graphene sheet and also a (5,5) single wall carbon nanotube (SWCNT) by using the PWscf code from the ‘Quantum Espresso’ package. Two different types of pseudopotentials, ‘norm conserving’ and ‘ultra soft’, have been employed and the results are more or less similar up to the Fermi level. By energy relaxation, it was found that, if the inter-layer distance of graphite expands up to 4.5 times its in-layer (hexagonal) lattice constant, then each layer can be considered as an individual graphene sheet and, in a bundle of (5,5) SWCNTs, the optimum separation between the tubes’ centers is about 19 a.u. and, if it expands to 22 a.u., then a single wall tube consideration can be made. The calculated band structure and density of states (DOS) for the (5,5) SWCNT show that in the vicinity of the Fermi level there is no energy gap (so that it is metallic) and there is a general agreement between them and zone-folding studies or other ab initio methods in the literature. The effects of curvature on the band shifts and DOS have been considered, and they magnify the departure from Mintmire and White’s universal prediction. PACS  71.20.Tx; 71.15.Mb; 73.61.Wp
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号