首页 | 本学科首页   官方微博 | 高级检索  
     


Theory of vortical helical ideal gas flows in laval nozzles
Authors:Yu. A. Gostintsev  O. A. Uspenskii
Abstract:An asymptotic solution is found for the direct problem of the motion of an arbitrarily vortical helical ideal gas flow in a nozzle. The solution is constructed in the form of double series in powers of parameters characterizing the curvature of the nozzle wall at the critical section and the intensity of stream vorticity. The solution obtained is compared with available theoretical results of other authors. In particular, it is shown that it permits extension of the known Hall result for the untwisted flow in the transonic domain [1]. The behavior of the sonic line as a function of the vorticity distribution and the radius of curvature of the nozzle wall is analyzed. Spiral flows in nozzles have been investigated by analytic methods in [2–5] in a one-dimensional formulation and under the assumption of weak vorticity. Such flows have been studied by numerical methods in a quasi-one-dimensional approximation in [6, 7]. An analogous problem has recently been solved in an exact formulation by the relaxation method [8, 9]. A number of important nonuniform effects for practice have consequently been clarified and the boundedness of the analytical approach used in [2–7] is shown.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 126–137, March–April, 1978.The authors are grateful to A. N. Kraiko for discussing the research and for valuable remarks.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号