首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Input power flow in a submerged infinite cylindrical shell with doubly periodic supports
Authors:J Yan  JX Liu  X Zhu
Institution:Department of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 43007, PR China
Abstract:A submerged cylindrical shell reinforced by supports of rings and bulkheads is the primary structure of submarine, torpedo and all kinds of submerged aircrafts, so it is significant to study its characteristics of structure-borne sound. By means of periodic structure theory, the input power flow from a cosine harmonic line force into a submerged infinite cylindrical shell, reinforced by doubly periodic supports of rings and bulkheads, is studied analytically. The harmonic motion of the shell and the sound pressure field in the fluid are described by Flügge shell equations and Helmholtz equation, respectively. Since the fluid radical velocity and the shell radical velocity must be equal at the interface of the outer shell wall and the fluid, the motion equations of this coupled system are obtained. Both four kinds of forces (moments) between rings and shell and four kinds of forces (moments) between bulkheads and shell are considered. The solution is obtained in series form by expanding the system responses in terms of the space harmonics of the spacings of both stiffeners and bulkheads. The input vibrational power flow into the structure is obtained and the influences of different structural parameters on the results are analyzed. The analytic model is close to engineering practice, and it will give some guidelines for noise reduction of this kind of shell.
Keywords:Submerged cylindrical shell  Rings  Bulkheads  Periodic structures  Space harmonic analysis method  Input power flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号