首页 | 本学科首页   官方微博 | 高级检索  
     


In-source CID of guanosine: Gas phase ion-molecule reactions
Authors:Robin Tuytten  Filip Lemière  Eddy L. Esmans  Wouter A. Herrebout  Benjamin J. van der Veken  Ed Dudley  Russell P. Newton  Erwin Witters
Affiliation:Department of Chemistry, Nucleoside Research and Mass Spectrometry Unit and Center for Proteomics and Mass Spectrometry, University of Antwerp, Antwerp, Belgium.
Abstract:In-source collision induced dissociation was applied to access second generation ions of protonated guanosine. The in-source gas-phase behavior of [BH2]+-NH3 (m/z 135, C5H3N4O+) was investigated. Adduct formation and reactions with available solvent molecules (H2O and CH3OH) were demonstrated. Several addition/elimination sequences were observed for this particular ion and solvent molecules. Dissociation pathways for the newly formed ions were developed using a QqTOF mass spectrometer, permitting the assignment of elemental compositions of all product ions produced. Reaction schemes were suggested arising from the ring-opened intermediate of the protonated base moiety [BH2]+, obtained from fragmentation of guanosine. The mass spectral data revealed that the in-source CH3OH-reaction product underwent more complex fragmentations than the comparable ion following reaction with H2O. A rearrangement and a parallel radical dissociation pathway were discerned. Apart from the mass spectrometric evidence, the fragmentation schemes are supported by density functional theory calculations, in which the reaction of the ring-opened protonated guanine intermediate with CH3OH and a number of subsequent fragmentations were elaborated. Additionally, an in-source transition from the ring-opened intermediate of protonated guanine to the ring-opened intermediate of protonated xanthine was suggested. For comparison, a low-energy collision induced dissociation study of xanthosine was performed. Its dissociation pathways agreed with our assumption.
Keywords:
本文献已被 ScienceDirect PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号