首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polymer-induced turbulence modifications in an impinging jet
Authors:R Mejia-Alvarez  K T Christensen
Institution:(1) Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA;
Abstract:This effort explores the impact of dilute polymer solutions on the turbulence characteristics in a submerged liquid impinging-jet configuration. Turbulent impinging jets are commonly used in technological applications such as drying, scouring, cooling, or heating due to an enhancement in transport characteristics in the impingement region under certain nozzle-to-wall configurations. Previous efforts have identified significant turbulence modifications in the presence of dilute concentrations of polymer in both bounded and unbounded flows, though the former has received considerably more attention. To this end, particle-image velocimetry measurements were taken for an axisymmetric turbulent impinging jet with a nozzle-to-wall distance H/D = 6.8 and nominal Reynolds number of 26,000. Measurements were performed for both plain water and dilute polymer solutions of polyethylene oxide at concentrations of 50 and 100 ppm. The mean and turbulence characteristics of these three flows are contrasted and it is observed that the two polymer solutions modify both the mean and turbulent characteristics of the jet in all three regions of interest (the free-jet, impingement, and wall-jet regions). Of interest, the 50 ppm case yielded a slight suppression of the turbulence in the free-jet region accompanied by a longer axial length of the potential core compared to the case of plain water. In contrast, the 100 ppm case exhibits clear enhancement of the turbulence in the free-jet region and a shortening of the potential core length. The effect of polymer was opposite in the impingement and wall-jet regions wherein the turbulence was slightly suppressed in the 100 ppm case in a manner consistent with the onset of the Toms effect in this wall-bounded region of the flow.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号