首页 | 本学科首页   官方微博 | 高级检索  
     


Computing the Matrix Cosine
Authors:Nicholas J. Higham  Matthew I. Smith
Affiliation:(1) Department of Mathematics, University of Manchester, Manchester, M13 9PL, England e
Abstract:An algorithm is developed for computing the matrix cosine, building on a proposal of Serbin and Blalock. The algorithm scales the matrix by a power of 2 to make the infin-norm less than or equal to 1, evaluates a Padé approximant, and then uses the double angle formula costhinsp(2A)=2costhinsp(A)2I to recover the cosine of the original matrix. In addition, argument reduction and balancing is used initially to decrease the norm. We give truncation and rounding error analyses to show that an [8,8] Padé approximant produces the cosine of the scaled matrix correct to machine accuracy in IEEE double precision arithmetic, and we show that this Padé approximant can be more efficiently evaluated than a corresponding Taylor series approximation. We also provide error analysis to bound the propagation of errors in the double angle recurrence. Numerical experiments show that our algorithm is competitive in accuracy with the Schur–Parlett method of Davies and Higham, which is designed for general matrix functions, and it is substantially less expensive than that method for matrices of infin-norm of order 1. The dominant computational kernels in the algorithm are matrix multiplication and solution of a linear system with multiple right-hand sides, so the algorithm is well suited to modern computer architectures.
Keywords:matrix function  matrix cosine  matrix exponential  Taylor series  Padé   approximation  double angle formula  rounding error analysis  Schur–  Parlett method  MATLAB
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号