首页 | 本学科首页   官方微博 | 高级检索  
     

混合von Mises 模型的参数估计
引用本文:陈家骅,李鹏飞,谭鲜明. 混合von Mises 模型的参数估计[J]. 系统科学与数学, 2007, 27(1): 59-67
作者姓名:陈家骅  李鹏飞  谭鲜明
作者单位:1. 加拿大滑铁卢大学统计与精算科学系,加拿大,N2L 3G1
2. 加拿大滑铁卢大学统计与精算科学系,加拿大,N2L 3G1;南开大学数学科学学院,天津,300071
基金项目:加拿大NSERC基金;国家自然科学基金
摘    要:有限混合von Mises模型在天文学、生物学、地理和医药等许多领域都有重要的应用.可是,不论样本量有多大,此模型的似然函数都是无界的.因此,参数的最大似然估计(MLE)是不相合的.我们发现,与混合正态模型一样,上述困难可以通过引入关于分布浓度参数的一个惩罚函数或对参数空间添加适当的约束来克服.在此文中,我们从理论上证明了这两种方法是可行的,相应的参数估计是强相合的,且是渐近有效的.我们还通过计算机模拟来探讨这些新方法在有限样本情况下的统计性质,并与现有的矩估计作了比较.结果发现,惩罚极大似然估计在均方误差方面表现最佳.最后我们还分析了一组实际数据,以进一步介绍新的估计方法.

关 键 词:混合von Mises模型  约束最大似然  惩罚最大似然  强相合性
收稿时间:2006-10-26
修稿时间:2006-10-26

INFERENCE FOR VON MISES MIXTURE IN MEAN DIRECTION AND CONCENTRATION PARAMETERS
Chen Jiahua,Li Pengfei,Tan Xianming. INFERENCE FOR VON MISES MIXTURE IN MEAN DIRECTION AND CONCENTRATION PARAMETERS[J]. Journal of Systems Science and Mathematical Sciences, 2007, 27(1): 59-67
Authors:Chen Jiahua  Li Pengfei  Tan Xianming
Affiliation:(1)Department of Statistical and Acturial Sciences, University of Waterloo, ON, Canada N2L 3G1; (2) LPMC and School of Mathematical Sciences, Nankai University, Tianjin 300071
Abstract:The finite mixtures of von Mises distributions in both mean direction and concentration parameters are widely used in many disciplines, including astronomy, biology, ecology, geology and medicine. It is well known that the likelihood function is unbounded for any sample size. Hence, the ordinary maximum likelihood estimator (MLE) is not consistent. Similar to normal mixtures in both mean and variance parameters, this drawback of MLE will disappear by introducing a penalty function to the log-likelihood function or putting constraints on component concentration parameters (Chen et al., 2006 and Tan et al., 2006). In this paper, we prove that both of the penalized maximum likelihood estimator and the constrained maximum likelihood estimator are asymptotically consistent and efficient. The finite sample performance of penalized MLE and constrained MLE are compared with the moment estimator (Spur and Koutbeiy, 1991) through simulations. The PMLE is found to have the best performance in term of mean square error. A real data example is used to illustrate the proposed methods.
Keywords:Constrained maximum likelihood   mixture of von Mises distributions   penalized maximum likelihood   strong consistency.
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统科学与数学》浏览原始摘要信息
点击此处可从《系统科学与数学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号