首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The mechanical moduli of lamellar semicrystalline polymers
Authors:Richard H Boyd
Abstract:Bounds on the elastic constants are derived for semicrystalline polymers whose local morphology is lamellar. Local response matrices (stiffness and compliance) are formulated in three dimensions that simultaneously incorporate uniform in-plane strain and additive forces from layer to layer of crystalline and amorphous phases and uniform stress and additive displacements normal to the lamellar surfaces. Spatial averaging of the stiffness and compliance matrices under the assumption of axially symmetric orientation gives the upper and lower bounds on the longitudinal and transverse tensile moduli and the axial and transverse shear moduli as functions of the separate phase elastic constants, the volume percent crystallinity, and the moments of the orientation 〈cos2θ〉 and 〈cos4θ〉. The bounds are much tighter than the Voight upper and Reuss lower bounds that do not recognize phase geometry. Using the known crystal elastic constants of polyethylene, sample calculations on isotropic unoriented materials show that the divergence of bounds at high crystallinity necessitated by the extreme crystal anisotropy shows up only at very high crystallinity. At low temperature the bounds are tight enough to specify G1, the amorphous modulus, from the measured G and the known crystal elastic constants. At higher temperatures and lower G, the bounds are not tight enough for this purpose but the shear modulus versus crystallinity and temperature data are well fitted by the lamellar lower bound using a temperature-dependent, crystallinity-independent G1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号