首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate
Authors:Gottfried Lichti  Robert G Gilbert  Donald H Napper
Abstract:A new method is presented that provides experimental information which is qualitatively and quantitatively sensitive to assumptions made as to the mechanisms of free radical entry and of latex particle formation in emulsion polymerization systems. The method consists of (1) obtaining (by electron microscopy) the full particle-size distributions (PSDs) at several different times soon after the cessation of latex particle nucleation, (2) using these PSDs to determine the volume dependences of the various rate coefficients governing particle growth by fitting the data to the appropriate evolution equations, and (3) employing these empirical rate coefficients to find that time dependence of the nucleation rate which fits the early-time PSD (again using the evolution equations). This method is quite sensitive to mechanistic assumptions: for example, one is able to determine whether or not the nucleation rate is an increasing or decreasing function of time. The technique is applied to a styrene nucleation system employing sodium dodecyl sulfate as surfactant at well above the critical micelle conventration. The data cannot be fitted even qualitatively by a simple one-step nucleation mechanis, whether it involes micellar entry or homogeneous nucleation. It is found, on the other hand, that the results can be accurately fitted by assuming that coagulation events between primary colloidal particles, perhaps formed by homogeneous nucleation, dominate both the nucleation process and the entry of free radicals into mature latex particles. In addition, the data indicate that the rate of free radical entry into the latex particles decreases with increasing particle size, at least for particles of unswollen radius less than ca. 40 nm.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号