Abstract: | The kinetics of electron transfer from hexacyanoferrate(II) to tris(dimethylglyoximato)-nickelate(IV), Ni(dmg)32?, to produce Fe(CN)63? and Ni(dmgH)2, follows a pseudo-first-order disappearance in the Ni(IV). The pseudo-first-order rate constants kobs are linearly dependent on [Fe(CN)64?]0 in a fiftyfold range of 2 × 10?4?1 × 10?2M, and the average values of kobs/[Fe(CN)64?]0 range from 194M?1·s?1 at pH = 5.20 to 0.2M?1·s?1 at pH = 9.07 in aqueous medium at 35°C and μ = 0.57M. Results are interpreted in terms of a probable mechanism involving rate-determining outer sphere one-electron transfer steps from the reductant and one-protonated reductant species to the unprotonated and one-protonated Ni(IV) species present in solution. The more electrophilic one-protonated reductant species apparently reacts several orders of magnitude faster than the unprotonated one. |