首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron–proton and electron–methyl exchanges in pyrolysis of polyacetylene and polymethylacetylene
Authors:J L Fan  James C W Chien
Abstract:Pyrolysis of polyacetylene is marked by high yields of proton-enriched products methane, ethane, ethylene, propane, polypylene, butadiene, cyclopentadiene, 1,3-pentadiene, and toluene in total amounts exceeding benzene. The activation energies for their formation are low. Polyacetylene doped with AsF5 and iodine produced these products in even higher yields of two to 17 times of undoped polymers. The dominant mechanism is thought to be random-chain scission followed by electron–proton exchange reactions. Polymethylacetylene is thermally less stable than polyacetylene. Pyrolysis gave mesitylene as the expected main product. However, as in the case of polyacetylene, large amounts of proton-enriched products were formed with moderate activation energies. (The yields of methane, propylene, and propane are nearly the same in the pyrolysis of polymethylacetylene as compared to that of polyacetylene at 923°K referenced to mesitylene and benzene, respectively.) By analogy, mechanisms involving both electron-proton and electron–methyl exchange reactions were proposed to account for the formation of all the pyrolyzates of polymethylacetylene. These reactions, not observed in the pyrolysis of polypropylene and polyisoprene, are attributable to the conjugated backbone permitting facile migrations of electrons, protons, and methyl groups.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号