Abstract: | The effect of low-molecular-weight miscible additives on the sub-Tg (β) relaxation process in bisphenol-A polycarbonate (BPAPC) was studied using high-resolution carbon-13 solid-state NMR. The trend of the spin-lattice relaxation times T1 at 50 MHz suggests that strong intermolecular interactions occur upon mixing when BPAPC is physically stiffened by the antiplasticizing diluent, diphenylphthalate. The values of 13C T1 at 15 MHz in d-chloroform solutions for similar BPAPC-diluent mixtures suggest that diluent effects on the megahertz mobility of the polymer occur exclusively in the solid state. These results are explained using equilibrium thermodynamics, in the Ehrenfest sense, at the second-order glass transition temperature Tg. Theory predicts that the temperature dependence of the Flory–Huggins interaction parameter ?χ/?T changes abruptly as the polymer-diluent blends are cooled below Tg from the molten state. The difference between ?χ/?T in the liquid and glassy states is the major factor which determines the diluent concentration dependence of Tg. A method is developed to estimate the relative magnitudes of χ for polymerdiluent blends in the glassy state. |