Structure and fragmentation of [C3H7O]+ ions formed by chemical ionization |
| |
Authors: | Alex. G. Harrison,Tino G umann,Daniel Stahl |
| |
Affiliation: | Alex. G. Harrison,Tino Gäumann,Daniel Stahl |
| |
Abstract: | The unimolecular metastable and collision-induced fragmentation reactions of [C3H7O]+ ions produced by gas-phase protonation of acetone, propanal, propylene oxide, oxetan and allyl alcohol have been studied. The CID studies show that protonation of acetone and allyl alcohol yield different stable ions with distinct structures while protonation of propanal or propylene oxide yield [C3H7O]+ ions of the same structure. Protonated oxetan rearranges less readily to give the same structure(s) as protonated propanal and propylene oxide. The [C3H7O]+ ions fragmenting as metastable ions after formation by CI have a higher internal energy than the same ions fragmenting after formation by EI. Deuteronation of the C3H6O isomers using CD4 reagent gas shows that loss of C2H3D proceeds by a different mechanism than loss of C2H4. The results are discussed in terms of potential energy profile for the [C3H7O]+˙ system proposed earlier. |
| |
Keywords: | |
|
|