首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mixed quantum-classical simulations of charge transport in organic materials: numerical benchmark of the Su-Schrieffer-Heeger model
Authors:Wang Linjun  Beljonne David  Chen Liping  Shi Qiang
Institution:Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium.
Abstract:The electron-phonon coupling is critical in determining the intrinsic charge carrier and exciton transport properties in organic materials. In this study, we consider a Su-Schrieffer-Heeger (SSH) model for molecular crystals, and perform numerical benchmark studies for different strategies of simulating the mixed quantum-classical dynamics. These methods, which differ in the selection of initial conditions and the representation used to solve the time evolution of the quantum carriers, are shown to yield similar equilibrium diffusion properties. A hybrid approach combining molecular dynamics simulations of nuclear motion and quantum-chemical calculations of the electronic Hamiltonian at each geometric configuration appears as an attractive strategy to model charge dynamics in large size systems "on the fly," yet it relies on the assumption that the quantum carriers do not impact the nuclear dynamics. We find that such an approximation systematically results in overestimated charge-carrier mobilities, with the associated error being negligible when the room-temperature mobility exceeds ~4.8 cm(2)∕Vs (~0.14 cm(2)/Vs) in one-dimensional (two-dimensional) crystals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号