首页 | 本学科首页   官方微博 | 高级检索  
     


The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects
Authors:Schapiro Igor  Ryazantsev Mikhail Nikolaevich  Frutos Luis Manuel  Ferré Nicolas  Lindh Roland  Olivucci Massimo
Affiliation:Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403, United States.
Abstract:Rhodopsin (Rh) and bathorhodopsin (bathoRh) quantum-mechanics/molecular-mechanics models based on ab initio multiconfigurational wave functions are employed to look at the light induced π-bond breaking and reconstitution occurring during the Rh → bathoRh and bathoRh → Rh isomerizations. More specifically, semiclassical trajectory computations are used to compare the excited (S(1)) and ground (S(0)) state dynamics characterizing the opposite steps of the Rh/bathoRh photochromic cycle during the first 200 fs following photoexcitation. We show that the information contained in these data provide an unprecedented insight into the sub-picosecond π-bond reconstitution process which is at the basis of the reactivity of the protein embedded 11-cis and all-trans retinal chromophores. More specifically, the data point to the phase and amplitude of the skeletal bond length alternation stretching mode as the key factor switching the chromophore to a bonding state. It is also confirmed/found that the phase and amplitude of the hydrogen-out-of-plane mode controls the stereochemical outcome of the forward and reverse photoisomerizations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号