首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient production of reference materials of hazardous organics using smart calibration by nuclear magnetic resonance
Authors:Takeshi Saito  Toshihide Ihara  Tooru Miura  Yuuko Yamada  Koichi Chiba
Institution:1. National Metrology Institute of Japan, AIST, Tsukuba, Ibaraki, Japan
2. Wako Pure Chemical Industries, Kawagoe, Saitama, Japan
Abstract:The accurate quantification of pesticide residues in food is an important factor in assuring the quality of life of our citizens. In general, chromatographic methods are used, which require certified reference materials (CRMs) for each analyte of interest for accurate quantitative analysis. Recently, regulation of pesticides in food, limiting the positive maximum residue (positive list system) has been brought into effect in Japan. Furthermore, ISO/IEC 17025 requires calibration and testing laboratories to program calibrations and measurements traceable to the International System of Units (SI). Accordingly, these laboratories need a suite of CRMs that are traceable to the SI. In order to address these requirements for every analyte of interest in an efficient manner, a new approach to producing SI traceable CRMs is required. Nuclear magnetic resonance (NMR) has been used widely in chemical analysis. One of the well known characteristics of NMR is the proportional relationship between peak area and the number of nuclei contributing to the peak. If accurate relative intensities of peak areas are obtained, this provides an attractive quantitative tool for organic compounds. The area of a signal from an analyte can be measured with respect to another signal originating from a comparator that has been added to the sample solution. The chosen comparator should not react with the analyte or resonate at any chemical shift similar to that of the analyte. This enables us to produce SI traceable CRMs more effectively. In this paper, we demonstrate a new approach for producing CRMs for pesticides using quantitative NMR??an SI traceable quantitative technique.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号