首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimizing the quasi-equilibrium state of hot carriers in all-inorganic lead halide perovskite nanocrystals through Mn doping: fundamental dynamics and device perspectives
Authors:Jie Meng  Zhenyun Lan  Weihua Lin  Mingli Liang  Xianshao Zou  Qian Zhao  Huifang Geng  Ivano E Castelli  Sophie E Canton  Tnu Pullerits  Kaibo Zheng
Institution:Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby Denmark.; Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kongens Lyngby Denmark ; Chemical Physics and NanoLund, Lund University, Box 124, 22100 Lund Sweden ; Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 China ; European XFEL, Holzkoppel 4, 22869 Schenefeld Germany
Abstract:Hot carrier (HC) cooling accounts for the significant energy loss in lead halide perovskite (LHP) solar cells. Here, we study HC relaxation dynamics in Mn-doped LHP CsPbI3 nanocrystals (NCs), combining transient absorption spectroscopy and density functional theory (DFT) calculations. We demonstrate that Mn2+ doping (1) enlarges the longitudinal optical (LO)–acoustic phonon bandgap, (2) enhances the electron–LO phonon coupling strength, and (3) adds HC relaxation pathways via Mn orbitals within the bands. The spectroscopic study shows that the HC cooling process is decelerated after doping under band-edge excitation due to the dominant phonon bandgap enlargement. When the excitation photon energy is larger than the optical bandgap and the Mn2+ transition gap, the doping accelerates the cooling rate owing to the dominant effect of enhanced carrier–phonon coupling and relaxation pathways. We demonstrate that such a phenomenon is optimal for the application of hot carrier solar cells. The enhanced electron–LO phonon coupling and accelerated cooling of high-temperature hot carriers efficiently establish a high-temperature thermal quasi-equilibrium where the excessive energy of the hot carriers is transferred to heat the cold carriers. On the other hand, the enlarged phononic band-gap prevents further cooling of such a quasi-equilibrium, which facilitates the energy conversion process. Our results manifest a straightforward methodology to optimize the HC dynamics for hot carrier solar cells by element doping.

Mn doping modulates the hot carrier dynamics in all-inorganic lead halide perovskite nanocrystals according to the excitation energy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号