首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Superposition of Quantum Confinement Energy (SQCE) model for estimating shell thickness in core-shell quantum dots: validation and comparison
Authors:Saran Amit D  Mehra Anurag  Bellare Jayesh R
Institution:Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India.
Abstract:A novel theoretical model based on superposition of core and shell band-gaps, termed as SQCE model, is developed and reported here, which enables one to estimate the shell thickness in a core-shell quantum dot (QD), which is critically important in deciding its optical and electronic properties. We apply the model to two experimental core-shell QD systems, CdSe-CdS and CdSe-ZnS, which we synthesize by microemulsion method. We synthesize and study two series of samples, R and S to study the optical properties. The core size is varied in the R-series (by varying water-to-surfactant ratio, R) whereas the shell thickness is varied in the S-series (by varying the shell-to-core precursor molar ratio, S). The core and core-shell QDs from R-series and S-series are characterized for particle size, shape and crystallographic information. The shell thickness for all core-shell QD samples is estimated by SQCE model, and experimentally measured with TEM and SAXS. A close match is observed between experimental values and model predictions, thus validating the model. Further, the optimum shell thickness (corresponding to maximum quantum yield) values for CdS and ZnS over a 4.26 nm CdSe core have been estimated as 0.585 nm and 0.689 nm, respectively, from the SQCE model. The SQCE model developed in this work is applicable to other core-shell quantum dots also, such as CdTe-CdS, CdTe-CdSe and CdS-ZnS, and will serve as a useful complement to experimental measurement.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号