首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Copper-zinc superoxide dismutase: theoretical insights into the catalytic mechanism
Authors:Pelmenschikov Vladimir  Siegbahn Per E M
Institution:Department of Physics, Stockholm University, S-106 91 Stockholm, Sweden. vovan@physto.se
Abstract:The mechanism for the toxic superoxide radical disproportionation to molecular oxygen and hydrogen peroxide by copper-zinc superoxide dismutase (CuZnSOD) has been studied using the B3LYP hybrid density functional. On the basis of the X-ray structure of the enzyme, the molecular system investigated includes the first-shell protein ligands of the two metal centers as well as the second-shell ligand Asp122. The substrates of the model reaction are two superoxide radical anions, approaching the copper center at the beginning of two half-reactions: the first part of the catalytic cycle involving Cu+ oxidation and the second part reducing Cu2+ back to its initial state. The quantitative free energy profile of the reaction is obtained and discussed in connection with the experimental data on the reduction potentials and CuZnSOD kinetics. The optimized structures are analyzed and compared to the experimental ones. The two transition states alternate the protonation state of His61 and correspond to histidine Cu-His61-Zn bridge rupture/reformation. Modifications applied to the initial model allow the importance of Asp122 for catalysis to be estimated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号