首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Giant magnetostriction materials
Authors:NC Koon  CM Williams  BN Das
Institution:

Naval Research Laboratory, Washington, DC 20375-5000, USA

Abstract:One of the significant technical developments in magnetism of the early 1970's was the discovery of a new class of rare earth intermetallic compounds, the RFe2 Laves phases, which were found to exhibit room temperature magnetostrictive strains approaching 2 × 10−3, an order of magnitude larger than any previously known. Since that time both the fundamental and technical properties of these materials have been of intense interest, and they remain the subject of active research even today. The large strains available are useful in such applications as production of high amplitude, low frequency sound waves in water, certain types of strain gages, vibration compensation and compensation for temperature induced strains in large laser mirrors. Because the performance of these materials depends critically on such fundamental properties as the magnetic anisotropy, magnetization and grain orientation of the material, there has been a very strong interplay between fundamental studies and applications. In this article we briefly review the fundamental magnetic and magnetostrictive properties of the RFe2 Laves phases, focusing especially on the complex behavior of the anisotropy and the success of crystal field theory in explaining it. We also present neutron measurements of magnetic excitation spectra and explain how they provide an understanding of the remarkable success of mean field theory for these systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号