首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polyamide grafted with polypyrrole: formation, properties, and stability
Authors:Katarína Mosná?ková  Mohamed M Chehimi  Pavol Fedorko  Mária Omastová
Institution:1305. Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
2305. ITODYS, UMR CNRS 7086, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Ba?f, 75013, Paris, France
3305. Department of Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
Abstract:Conducting textiles of polyamide (PA) fabrics and polypyrrole (PPy) were prepared by in situ oxidative chemical polymerisation of pyrrole (Py) on the surface of PA textiles using FeCl3 as oxidant. The anionic surfactant, dodecylbenzenesulphonic acid, was used as co-dopant during Py polymerisation on the textile surface. The influence of the monomer amount and polymerisation conditions on formation of the conducting PPy layer, conductivity, morphology, and stability of the prepared PA/PPy was studied. The conductivity of modified textiles decreased rapidly after the washing process, so a special Py-functionalised silane (1-(3-(triethoxysilyl)propylamino)-3-(1-H-pyrrole-1-yl)propan-2-ol; SP) was synthesised and applied to the PA surface prior to PPy formation. The presence of SP on the PA surface after completion of the sol-gel process was verified by Fourier transform infrared spectroscopy with an attenuated total reflectance. Pyrrole polymerisation was subsequently applied to the SP pre-treated textile surface. The influence of SP concentration on both the fastness of the conducting layer after the washing process and stability of the electrical conductivity of the prepared PA/PPy samples was investigated. Surface conductivity of the samples treated and untreated by the sol-gel process of SP was measured both prior to and after washing of the prepared textiles. It was found that an application of 0.6 mass % of SP significantly improved the fastness of the PPy layers. Examination of the modified PA surface using scanning electron microscopy disclosed the differences in the formation of PPy on PA textiles when using SP and also showed differences on the PPy modified textile surface prior to and after washing. The method of X-ray photoelectron spectroscopy was used for a detailed study of the surface composition. It was confirmed that the pre-treatment with Py-functionalised triethoxysilane significantly influenced the chemical composition of the PA surface modified with PPy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号