首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum hall effect in an antidot lattice: Macroscopic limit
Authors:É. M. Baskin  M. V. Éntin
Affiliation:(1) Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090, Russia
Abstract:The quantum Hall effect in a 2D system with antidots is studied. The antidots are assumed to be large compared with the quantum and relaxation lengths. In this approximation the electric field in the system can be described by the continuity equation. It is found that the electric field in a system without conducting boundaries can be expressed in terms of the same system without a magnetic field. Specific problems of the electric field and current in structures containing one or two antidots and in a circular disk with point contacts are solved. The effective Hall and longitudinal conductivities in a sample containing a large number of randomly distributed antidots are found. In the limit of zero local longitudinal conductivity, the effective longitudinal conductivity also vanishes, and the Hall conductivity is equal to the local conductivity. The corrections to the conductivity tensor which are due to the finiteness of the local conductivity are obtained. Breakdown of the quantum Hall effect in a lattice of antidots is studied on the basis of the assumption that a high current density in narrow locations of the system results in overheating of the electrons. Local and nonlocal models of over-heating are studied. The high-frequency effective conductivity of a system with antidots and the shift of the cyclotron resonance frequency are found.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号