首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Water exchange in fluoroaluminate complexes in aqueous solution: a variable temperature multinuclear NMR study
Authors:Yu P  Phillips B L  Casey W H
Institution:Department of Land Air and Water Resources, University of California, Davis, California 95616, USA.
Abstract:An 17O, 19F, and 27Al NMR study of fluoroaluminate complexes (AlFn(H2O)6-n((3-n)+), n = 0, 1, and 2) in aqueous solution supports the idea that for each substitution of a bound water molecule by a fluoride anion, the exchange rate of bound water with free water increases by about 2 orders of magnitude. New rate coefficients for exchange of inner-sphere water molecules in AlF(H2O)5(2+) are kex(298) = 230(+/-20) s(-1), DeltaH(dagger) = 65(+/-3) kJ mol(-1), and DeltaS(dagger) = 19(+/-10) J mol(-1) K(-1). The corresponding new values for the AlF2(H2O)4(+) complex are: kex(298) = 17 100(+/-500) s(-1), DeltaH(dagger) = 66(+/-2) kJ mol(-1), and DeltaS(dagger) = 57(+/-8) J mol(-1) K(-1). When these new results are combined with those of our previous study,(4) we find no dependence of the solvent exchange rate, in either AlF(H2O)5(2+) or AlF2(H2O)4(+), on the concentration of fluoride or protons over the range of SigmaF = 0.06-0.50 M and H(+)] = 0.01-0.44 M. A paramagnetic shift of 27Al resonances results from addition of Mn(II) to the aqueous solution as a relaxation agent for bulk waters. This shift allows resolution of the AlFn(H2O)6-n((3-n)+) species in 27Al NMR spectra and comparison of the speciation determined via thermodynamic calculations with that determined by 27Al, 19F, and 17O NMR.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号