首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces
Authors:Shen Yangyang  Couzis Alexander  Koplik Joel  Maldarelli Charles  Tomassone M Silvina
Institution:Department of Chemical and Biochemical Engineering, Rutgers University, NJ, USA.
Abstract:The spreading of a partially wetting aqueous drop in air on a hydrophobic surface can be facilitated by the adsorption of surfactants from the drop phase onto the air/aqueous and aqueous/hydrophobic solid interfaces of the drop. At the contact line at which these interfaces meet, conventional surfactants with a linear alkyl hydrophobic chain attached to a polar group adsorb onto the surfaces, forming monolayers which remain distinct as they merge at the contact juncture. The adsorption causes a decrease in the interfacial tensions and reduction in the contact angle but the angle remains above zero so the drop is still nonwetting. Trisiloxane surfactants with a T-shaped geometry in which the hydrophobic group is composed of a trisiloxane oligomer with a polar group attached at the center of the chain can give rise to a zero contact angle at the contact line and complete wetting (superspreading). Experimental evidence suggests the adsorption of the T-shaped molecule, in addition to significantly decreasing the tensions of the interfaces (relative to the conventional surfactants), promotes the formation of a precursor film consisting of a surfactant bilayer at the contact line which facilitates the spreading. The aim of this study is to use molecular dynamics to examine if the T-shaped structure can promote spreading by the formation of a bilayer and to contrast this case with that of the linear chain surfactant where complex assembly does not occur. The simulation models the solvent as a monatomic liquid, the substrate as a particle lattice, and the surfactants as united atom structures, with all interactions given by Lennard-Jones potentials. We start with a base case in which the solvent partially wets a substrate comprised of a lattice of particles. We demonstrate that adsorbed T-shaped surfactant monolayers can, when the interaction between the solvent and the hydrophile particles is strong enough, assemble into a bilayer, allowing the drop to extend to a thin planar film. In the case of the flexible linear chain surfactant, there is no interaction between the monolayers on the two interfaces in the case of a strong hydrophile-solvent interaction and less coordination for a weaker interaction. In either case, the monolayers remain distinct, as the surfactant only marginally improves wetting.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号