首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microphase separation induced by interfacial segregation of isotropic, spherical nanoparticles
Authors:Hore Michael J A  Laradji Mohamed
Institution:Department of Physics, The University of Memphis, Memphis, Tennessee 38152, USA.
Abstract:In a recent experiment by Chung et al. Nano Lett. 5, 1878 (2005)] and simulation by Stratford et al. Science 309, 2198 (2005)] on immiscible blends containing nanoscale particles, it was shown that the phase separation of the two polymers can be prevented as a result of the aggregation of the nanoparticles at the interfaces between the two polymers. Motivated by these studies, we performed large scale systematic simulations, based on the dissipative particle dynamics approach, on immiscible binary (A-B) fluids containing moderate volume fractions of isotropic nanoscale spherical particles N. The nanoparticles preferentially segregate at the interfaces between the two fluids if the pairwise interactions between the three components are such that chi(AB)>/chi(AN)-chi(BN)/. We find that at later times, the average domain size saturates to a value, L approximately R(N)/phi(N), where R(N) and phi(N) are the radius and volume fraction of the nanoparticles, respectively. For small nanoparticles, however, full phase separation is observed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号