首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-Bandwidth Q-Band EPR Resonators
Authors:Rene?Tschaggelar  Frauke?D?Breitgoff  Oliver?Oberh?nsli  Mian?Qi  Adelheid?Godt  Email authorEmail author
Institution:1.Laboratory of Physical Chemistry,ETH Zurich,Zurich,Switzerland;2.Faculty of Chemistry and Center for Molecular Materials (CM2),Bielefeld University,Bielefeld,Germany
Abstract:The emerging technology of ultra-wide-band spectrometers in electron paramagnetic resonance—enabled by recent technological advances—provides the means for new experimental schemes, a broader range of samples, and huge gains in measurement time. Broadband detection does, however, require that the resonator provides sufficient bandwidth and, despite resonator compensation schemes, excitation bandwidth is ultimately limited by resonator bandwidth. Here, we present the design of three resonators for Q-band frequencies (33–36 GHz) with a larger bandwidth than what was reported so far. The new resonators are of a loop-gap type with 4–6 loops and were designed for 1.6 mm sample tubes to achieve higher field homogeneity than in existing resonators for 3 mm samples, a feature that is beneficial for precise spin control. The loop-gap design provides good separation of the B 1 and E field, enabling robust modes with powder samples as well as with frozen water samples as the resonant behavior is largely independent of the dielectric properties of the samples. Experiments confirm the trends in bandwidth and field strength and the increased B 1 field homogeneity predicted by the simulations. Variation of the position of the coupling rod allows the adjustment of the quality factor Q and thus the bandwidth over a broad range. The increased bandwidth of the loop-gap resonators was exploited in double electron–electron resonance measurements of a Cu(II)-PyMTA ruler to yield significantly higher modulation depth and thus higher sensitivity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号