Abstract: | The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2–5)-keV helium ions to a dose of D = 6 × 1015–5 × 1017 cm–2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ(z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm–2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer. |