首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using bulk convection in a microtensiometer to approach kinetic-limited surfactant dynamics at fluid-fluid interfaces
Authors:Alvarez Nicolas J  Vogus Douglas R  Walker Lynn M  Anna Shelley L
Institution:Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
Abstract:The effects of carbon chain length and temperature were investigated on adsorption kinetics and surface tension of a group of slightly volatile, short carbon chain molecules: 1-octanol, 1-hexanol, and 1-butanol. Experiments were performed in a closed chamber where simultaneous adsorption from both sides of the vapor/liquid interface was considered. The dynamic (time dependent) and steady-state surface tensions were found to decrease with temperature ranging from 10 °C to 35 °C. It was shown that, at the final steady-state, the effect of adsorption from the vapor phase was much more important than that from the liquid phase especially for short carbon chain molecules (e.g., 1-butanol). The modified Langmuir equation of state and modified kinetic transfer equation, which account for adsorption from both sides of a vapor/liquid interface, were used to model the experimental data of the steady-state and dynamic surface tension, respectively. Modeling results showed that the equilibrium constants and adsorption rate constants were increased with temperature and carbon chain length. The maximum surface concentration showed a decrease with temperature and an increase with carbon chain length. Some variations in the fitting parameters were observed in the dynamic modeling. These variations may be due to the experimental errors or the limitations of the proposed model.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号