首页 | 本学科首页   官方微博 | 高级检索  
     


A kinetic and product study of the Cl + HO2 reaction
Authors:Hickson Kevin M  Keyser Leon F
Affiliation:Earth and Space Sciences Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. kevin.hickson@jpl.nasa.gov
Abstract:Absolute rate data and product branching ratios for the reactions Cl + HO2 --> HCl + O2 (k1a) and Cl + HO2 --> OH + ClO (k1b) have been measured from 226 to 336 K at a total pressure of 1 Torr of helium using the discharge flow resonance fluorescence technique coupled with infrared diode laser spectroscopy. For kinetic measurements, pseudo-first-order conditions were used with both reagents in excess in separate experiments. HO2 was produced by two methods: through the termolecular reaction of H atoms with O2 and also by the reaction of F atoms with H2O2. Cl atoms were produced by a microwave discharge of Cl2 in He. HO2 radicals were converted to OH radicals prior to detection by resonance fluorescence at 308 nm. Cl atoms were detected directly at 138 nm also by resonance fluorescence. Measurement of the consumption of HO2 in excess Cl yielded k1a and measurement of the consumption of Cl in excess HO2 yielded the total rate coefficient, k1. Values of k1a and k1 derived from kinetic experiments expressed in Arrhenius form are (1.6 +/- 0.2) x 10(-11) exp[(249 +/- 34)/T] and (2.8 +/- 0.1) x 10(-11) exp[(123 +/- 15)/T] cm3 molecule(-1) s(-1), respectively. As the expression for k1 is only weakly temperature dependent, we report a temperature-independent value of k1 = (4.5 +/- 0.4) x 10(-11) cm3 molecule(-1) s(-1). Additionally, an Arrhenius expression for k1b can also be derived: k1b = (7.7 +/- 0.8) x 10(-11) exp[-(708 +/- 29)/T] cm3 molecule(-1) s(-1). These expressions for k1a and k1b are valid for 226 K < or = T < or = 336 and 256 K < or = T < or = 296 K, respectively. The cited errors are at the level of a single standard deviation. For the product measurements, an excess of Cl was added to known concentrations of HO2 and the reaction was allowed to reach completion. HCl product concentrations were determined by IR absorption yielding the ratio k1a/k1 over the temperature range 236 K < or = T < or = 296 K. OH product concentrations were determined by resonance fluorescence giving rise to the ratio k1b/k1 over the temperature range 226 K < or = T < or = 336 K. Both of these ratios were subsequently converted to absolute numbers. Values of k1a and k1b from the product experiments expressed in Arrhenius form are (1.5 +/- 0.1) x 10(-11) exp[(222 +/- 17)/T] and (10.6 +/- 1.5) x 10(-11) exp[-(733 +/- 41)/T] cm3 molecule(-1) s(-1), respectively. These expressions for k1a and k1b are valid for 256 K < or = T < or = 296 and 226 K < or = T < or = 336 K, respectively. A combination of the kinetic and product data results in the following Arrhenius expressions for k1a and k1b of (1.4 +/- 0.3) x 10(-11) exp[(269 +/- 58)/T] and (12.7 +/- 4.1) x 10(-11) exp[-(801 +/- 94)/T] cm3 molecule(-1) s(-1), respectively. Numerical simulations were used to check for interferences from secondary chemistry in both the kinetic and product experiments and also to quantify the losses incurred during the conversion process HO2 --> OH for detection purposes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号