首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem
Authors:Matthias Prandtstetter  Günther R Raidl
Institution:Vienna University of Technology, Institute of Computer Graphics and Algorithms, Favoritenstrasse 9-11/E186-1, A-1040 Vienna, Austria1
Abstract:In this paper we present two major approaches to solve the car sequencing problem, in which the goal is to find an optimal arrangement of commissioned vehicles along a production line with respect to constraints of the form “no more than lccars are allowed to require a component c in any subsequence of mcconsecutive cars”. The first method is an exact one based on integer linear programming (ILP). The second approach is hybrid: it uses ILP techniques within a general variable neighborhood search (VNS) framework for examining large neighborhoods. We tested the two methods on benchmark instances provided by CSPLIB and the automobile manufacturer RENAULT for the ROADEF Challenge 2005. These tests reveal that our approaches are competitive to previous reported algorithms. For the CSPLIB instances we were able to shorten the required computation time for reaching and proving optimality. Furthermore, we were able to obtain tight bounds on some of the ROADEF instances. For two of these instances the proposed ILP-method could provide new optimality proofs for already known solutions. For the VNS, the individual contributions of the used neighborhoods are also experimentally analyzed. Results highlight the significant impact of each structure. In particular the large ones examined using ILP techniques enhance the overall performance significantly, so that the hybrid approach clearly outperforms variants including only commonly defined neighborhoods.
Keywords:Car sequencing problem  Integer linear programming  Variable neighborhood search  Hybrid meta-heuristics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号