首页 | 本学科首页   官方微博 | 高级检索  
     


Microsolvation of uracil and its conjugate bases: a DFT study of the role of solvation on acidity
Authors:Bachrach Steven M  Dzierlenga Michael W
Affiliation:Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, USA. sbachrach@trinity.edu
Abstract:The effect of microsolvation on the deprotonation energies of uracil was examined using DFT. The structures of uracil and its N(1) and N(3) conjugate bases were optimized with zero to six associated water molecules. Multiple configurations (upward of 93) of these hydrated clusters were located at PBE1PBE/6-311+G(d,p). Trends in these geometries are discussed, with the waters generally forming chains with small numbers of waters (one-three), rings (three-five waters), or cages (five-six waters). The difference in energy between the N1 and N3 conjugate bases is 13 kcal mol(-1) in the gas phase, and it decreases with each added water up to four. At this point the energy difference has been halved, but addition of a fifth or sixth water has little effect on the energy difference. This is understood in terms of the water structures and their ability to stabilize the negatively charged atoms in the conjugate bases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号