首页 | 本学科首页   官方微博 | 高级检索  
     

一种求解混合整数非线性规划问题的演化算法--搜索空间自动收缩法
引用本文:曾三友,康立山,丁立新. 一种求解混合整数非线性规划问题的演化算法--搜索空间自动收缩法[J]. 武汉大学学报(理学版), 2000, 46(5): 554-558
作者姓名:曾三友  康立山  丁立新
作者单位:1. 武汉大学,软件工程国家重点实验室,湖北,武汉,430072;株洲工学院,计算机科学与技术系,湖南,株洲,412008
2. 武汉大学,软件工程国家重点实验室,湖北,武汉,430072
3. 武汉大学,软件工程国家重点实验室,湖北,武汉,430072;海军工程大学,兵器工程系,湖北,武汉,430033
基金项目:国家自然科学基金!( 6863 5 0 3 0 ),国家863计划资助项目!( 863 -3 0 6-3 )
摘    要:提出一种求解混合整数非线性规划问题的新的演化算法 -搜索空间自动收缩法 (ACSSOS) .在这种算法中 ,演化算法既用来定位最优解区域 ,实现搜索空间自动向全局最优解收缩 ,又用来最终求得最优解 .由于在遗传算子中引用了舍入操作 ,它不仅可用来求解混合非线性整数规划问题 ,也可求解纯整型或纯实型变量非线性函数优化问题 .数值试验结果表明本文的算法在解的质量、稳定性和收敛速度等方面优于一般的演化算法 .

关 键 词:遗传算法  函数优化  混合整数规划
修稿时间:2000-06-12

A New Method of Evolutionary Algoriths for Mixed-Integer Nonlinear Optimization Problem--Automatically Constracting Search Space to Optimal Solution
ZENG San-you,KANG Li-shan,DING Li-xin. A New Method of Evolutionary Algoriths for Mixed-Integer Nonlinear Optimization Problem--Automatically Constracting Search Space to Optimal Solution[J]. JOurnal of Wuhan University:Natural Science Edition, 2000, 46(5): 554-558
Authors:ZENG San-you  KANG Li-shan  DING Li-xin
Abstract:A new method of evolutionary algorithms,called automatically constracting search space to optimal solution( ACSSOS) ,is proposed in this study .In this method,search space was gradually constracted to optimal solution while evolutionary algorithm was used repeatedly and incompletely.When the constracted space would cause the evolutionary algorithm trapped local optimum,the algorithm ran completely. In the evolutionary algorithm integer variables,relaxed as real variables during crossover operating,and the relaxed variables in the offsprings were rounded back before evaluating fitness. Real coding was used,and only crossoveroperators were adopted buttwo kindsof crossoveroperators were used in the method.The new method may not only be used to solve mixed- integer nonlinear optimization problems,but also used to solve the real or integer nonlinear optimization problems.The computation results demonstratored that the ACSSOS is superior to other methods in terms of solution quality , robustness and convergent speed.
Keywords:genetic algorithm  functon optimization  mixed- integer programming
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号