首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancing the superconducting transition temperature of CeRh 1-x IrxIn5 due to the strong-coupling effects of antiferromagnetic spin fluctuations: an 115In nuclear quadrupole resonance study
Authors:Kawasaki Shinji  Yashima Mitsuharu  Mugino Yoichi  Mukuda Hidekazu  Kitaoka Yoshio  Shishido Hiroaki  Onuki Yoshichika
Affiliation:Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Abstract:We report on systematic evolutions of antiferromagnetic (AFM) spin fluctuations and unconventional superconductivity (SC) in heavy-fermion (HF) compounds CeRh(1-x)Ir(x)In(5) via an (115)In nuclear-quadrupole-resonance experiment. The nuclear spin-lattice relaxation rate 1/T(1) has revealed the marked development of AFM spin fluctuations as approaching an AFM ordered state. Concomitantly, the superconducting transition temperature T(c) and the energy gap Delta0 increase drastically from T(c)= 0.4K and 2Delta0/k(B)T(c)=5 in CeIrIn(5) up to T(c) =1.2K and 2Delta0/k(B)T(c) =8.3 in CeRh(0.3)Ir(0.7)In5 , respectively. The present work suggests that the AFM spin fluctuations in close proximity to the AFM quantum critical point are indeed responsible for the strong-coupling unconventional SC in HF compounds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号