首页 | 本学科首页   官方微博 | 高级检索  
     


Fermi-liquid quasi-particles and -superconductivity in the two-dimensional Hubbard model
Authors:S. Wermbter
Abstract:A frequency- and momentum-renormalization-group acceleration together with an analytical approach is used to obtain the retarded Green's function in the self-consistent and conserving fluctuation-exchange (FLEX) approximation for the two-dimensional Hubbard model in the normal state and in the superconducting state. The analytical expressions for this approach are given. For band-fillings near half filling the self-energy in the normal state exhibits Fermi-liquid behaviour for, low temperatures and frequencies near the chemical potential, if the momentum is chosen near the Fermi-surface. However due to the presence of large many body effects the observed Fermi-liquid region near the chemical potential and near the Fermi-surface is very small. Results for the single particle density of states, the occupation number and the spectral function are presented. The superconducting state with urn:x-wiley:00033804:media:ANDP19985100104:tex2gif-inf-3 symmetry is obtained for U = 2 to U = 6 and a (U, n)-phase diagram for the transition temperature Tc is presented. A maximum Tc/t of 0.0275 is obtained for U = 6 near half filling.
Keywords:Fluctuation-exchange approximation  Fermi-liquid  Renormalization-group acceleration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号