首页 | 本学科首页   官方微博 | 高级检索  
     


Co2(OH)3Cl xerogels with 3D interconnected mesoporous structures as a novel high-performance supercapacitor material
Authors:S. Ranganatha  Surender Kumar  Tirupathi Rao Penki  Brij Kishore  N. Munichandraiah
Affiliation:1.Department of Inorganic & Physical Chemistry, Indian Institute of Science,Bengaluru,India
Abstract:Co2(OH)3Cl xerogel interconnected mesoporous structures have been prepared by a facile one pot sol-gel process and heat treated at 200 and 400 °C. All samples are studied for their morphology, structure, and electrochemical stability upon cycling. The specific capacitance of the as-prepared Co2(OH)3Cl from single electrode study is 450 F/g, when the electrodes are cycled in 3 M KOH at a specific current 2 A/g. Interestingly, capacity retention after 500 and 1000 cycles is about 92 and 75 %, respectively. Sample heated at 200 °C exhibits 308 F/g at 2 A/g and that heated at 400 °C shows only 32 F/g at 0.2 A/g. With an increase in preparation temperature, amorphous Co2(OH)3Cl is converted to crystalline Co3O4 phases with lower electrochemical performance. In full cell study, as-prepared Co2(OH)3Cl showed a capacity of about 49 F/g as asymmetric capacitor and 32 F/g as symmetric capacitor at 2 A/g current density. Co2(OH)3Cl being a novel porous material with merits of homogeneous porosity, high surface area, and an interconnected three dimensional (3D) structure exhibits considerably high capacitance. With a significant specific capacity and electrochemical stability, the synthesized material is a novel potential candidate for supercapacitors.
Graphical abstract ?
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号