首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of surface states in PbS quantum dots by temperature dependent photoluminescence
Authors:Naresh Babu Pendyala
Affiliation:Department of Physics, Indian Institute of Science, Bangalore 560012, India
Abstract:We report the type and nature of the surface states in PbS quantum dots grown in poly vinyl alcohol by the colloidal technique. Mercaptoethanol (C2H5OSH) capping and the molar ratio of Pb:S were used as parameters to understand the origin of the surface state related photoluminescence. From absorption and photoluminescence measurements, it was observed that increasing Lead concentration resulted in bigger nanoparticles with broad size distribution. However, the increase in sulfur concentration helped in the formation of smaller nanoparticles with narrow size distribution. Passivation studies also revealed that the origin of the bands below 1.1 eV was sulfur related. Thus these experiments indicated that sulfur played an important role, not only in size selectivity, but also in controlling defects in PbS quantum structures. Temperature dependent PL studies on different samples with various Pb:S molar ratios and with mercaptoethanol treated gave an insight into the nature of the surface states. Based on these results, we explain the origin of the surface states and proposed a model for different PL bands. The observed temperature-dependent trends of PL intensity (decreasing in Pb:S::1:1, increasing in S terminated and anomalous behavior in samples with excess of Pb) is attributed to the dominant mid-gap states and the results are consistent with carrier redistribution and recombination statistics involved in the quantum structures.
Keywords:78.55.&minus  m   82.35.Np   78.67.Hc   73.21.La   73.20.At
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号