首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Authors:Jian Zhang  Hao-Chun Zhang  Zi-Liang Huang  Wen-Bo Sun  Yi-Yi Li
Institution:School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:In recent years, there is a strong interest in thermal cloaking at the nanoscale, which has been achieved by using graphene and crystalline silicon films to build the nanoscale thermal cloak according to the classical macroscopic thermal cloak model. Silicon carbide, as a representative of the third-generation semiconductor material, has splendid properties, such as the high thermal conductivity and the high wear resistance. Therefore, in the present study, we build a nanoscale thermal cloak based on silicon carbide. The cloaking performance and the perturbation of the functional area to the external temperature filed are analyzed by the ratio of thermal cloaking and the response temperature, respectively. It is demonstrated that silicon carbide can also be used to build the nanoscale thermal cloak. Besides, we explore the influence of inner and outer radius on cloaking performance. Finally, the potential mechanism of the designed nanoscale thermal cloak is investigated by calculating and analyzing the phonon density of states (PDOS) and mode participation rate (MPR) within the structure. We find that the main reason for the decrease in the thermal conductivity of the functional area is phonon localization. This study extends the preparation method of nanoscale thermal cloaks and can provide a reference for the development of other nanoscale devices.
Keywords:nanoscale thermal cloak  silicon carbide  molecular dynamics  in-situ annealing  
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号