首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrorheological effect in hybrid fluids with liquid crystalline additives
Authors:M Ciszewska  A Krzto&#x;‐Maziopa  J P&#x;ocharski
Institution:M. Ciszewska,A. Krztoń‐Maziopa,J. Płocharski
Abstract:Conventional electrorheological (ER) fluids consist of electrically polarizable particles dispersed in an inert insulating liquid. They are characterized by a development of a yield stress upon application of an external electric field. They resemble Bingham fluids with yield stress value depending on electric field. A viscosity increase in the presence of an electric field has been also found in homogeneous solutions of liquid crystalline polymers with no yield stress observed. In this study these two types of fluids and combined dispersions of the solid particles in the liquid crystalline matrix were investigated. A lyotropic liquid crystalline polymer—poly(n‐hexyl isocyanate) (PHIC)—dissolved in xylene was chosen as the active matrix. The dispersed solid phase was comprised of two kinds of polymers: pyrolyzed polyacrylonitryle (PAN) showing electron conductivity, and PAN doped with two salts (KSCN, NaSCN), resulting in ionic conductivity. The rheological measurements under an electric field were performed. The pristine xylene solution of PHIC was characterized first as well as the 15% m/m dispersions of PAN powders in silicone oil. Then the dispersions in the liquid crystalline matrix were investigated showing a strong ER effect whose magnitude was considerably enhanced in comparison to both ER active components measured separately. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:electrorheological (ER) fluids  liquid‐crystalline polymers (LCP)  hybrid fluids  matrix  anionic polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号