首页 | 本学科首页   官方微博 | 高级检索  
     


Meso-substituted porphyrin photosensitizers with enhanced near-infrared absorption: Synthesis,characterization and biological evaluation for photodynamic therapy
Authors:Dong Pan  Xiangmin Zhong  Weidong Zhao  Zhaofeng Yu  Zhou Yang  Dong Wang  Hui Cao  Wanli He
Affiliation:Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
Abstract:Porphyrin derivatives are widely explored and used in photodynamic therapy, for their marvelous therapeutic properties. In order to fill in the gaps of insufficient photosensitizers with near-infrared absorption, three porphyrin molecules, 5,10,15,20-tetrakis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)zinc porphyrin(P1), 5,15-bis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)-10,20-bis(2-(2-(2-(4-ethynylphenoxy)ethoxy)ethoxy)ethanol)zincporphyrin(P2),5,15-bis(3,4-bis(2-(-2-(2-hydroxyethoxy)ethoxy)ethoxy)benzyl)-10,20-N,N-dibutyl-4-ethynylaniline zinc porphyrin(P3), were designed and synthesized targeting for more efficient cancer treatment. Excellent photophysical properties were illustrated by UV–vis absorption and emission spectra with enhanced absorbance between 650 and 750?nm and fluorescence emission within 600–800?nm. Besides, with high 1O2 quantum yield, especially P2 (0.89), all porphyrins were further evaluated in vitro by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay against Hela cells and exhibited negligible dark toxicity and robust phototoxicity. Fluorescence confocal laser microscopy confirmed cellular uptake and diffusion of these porphyrins, therefore demonstrated their potential and promising applications in photodynamic therapy.
Keywords:Sonogashira coupling reaction  Ethynylene bridge  Singlet oxygen  Photodynamic therapy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号