首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: Origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates
Authors:Suhee Choi  Miri AhnJongwon Kim
Institution:Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
Abstract:The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 105, and the detection limit of rhodamine 6G at DAR surfaces was 10−8 M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications.
Keywords:Electrodeposition  Dendritic Au rod  Surface-enhanced Raman scattering  Reproducibility  Electrochemical application
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号