首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1
Authors:Di Guo  Ming Zhuo  Xiaoai Zhang  Cheng Xu  Jie Jiang  Fu Gao  Qing Wan  Qiuhong Li  Taihong Wang
Institution:1. Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China;2. State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
Abstract:As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (VT) and field-effect mobility. The changes of IDVG curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10−9 g mL−1 to 5 × 10−6 g mL−1 with a detection limit of 0.8 × 10−10 g mL−1. Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs can be promising candidates for the development of label-free biosensors.
Keywords:Indium-tin-oxide  Thin film transistor  Avian influenza H5N1 virus  Biosensor  Label-free detection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号