首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contact angle determination of nanoparticles: film balance and scanning angle reflectometry studies
Authors:Deák András  Hild Erzsébet  Kovács Attila Lajos  Hórvölgyi Zoltán
Institution:Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science, H-1521, Budapest, Hungary.
Abstract:St?ber silica nanoparticles of diameter about 45, 60 and 100 nm and different hydrophobicity are used to produce monolayers at a water-air interface. Both the surface pressure-area isotherms and the reflectivity angle of incidence curves of the layers have been measured in a Wilhelmy film balance. The contact angle of the as-prepared particles have been determined from the isotherms by two different evaluation methods, and compared to those obtained from in situ scanning angle reflectometry (SAR) measurements. SAR is proved to be an effective tool for the estimation of contact angles on nanoparticles of different wettability, using a modified version of the previously published gradient layer model (E. Hild, T. Seszták, D. V?lgyes and Z. Hórv?lgyi, Prog. Colloid Polym. Sci., 2004, 125, 61, ref. 1) for evaluation. The results are in fairly good agreement with those determined from the non-dissipative part of the isotherms of the as prepared particles, assuming a weakly cohesive film model (S. Bordács, A. Agod and Z. Hórv?lgyi, Langmuir, 2006, 22, 6944, ref. 2). It seems that the traditional way to calculate the contact angle from the film balance experiments (J.H. Clint and N. Quirke, Colloids Surf., A, 1993, 78, 277, ref. 3) results in unreasonably high contact angles for the investigated systems and the homogeneous layer optical model gives unrealistic film thickness values in the case of hydrophobic particles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号