首页 | 本学科首页   官方微博 | 高级检索  
     


Immobilization of glutaryl-7-aminocephalosporanic acid acylase on silica gel and enhancement of its stability
Authors:Park Seung Won  Lee Jee Won  Hong Suk In  Kim Seung Wook
Affiliation:(1) Department of Chemical and Biological Engineering, Korea University, 1, Anam-dong, Sungbuk-ku, 136-701 Seoul, Korea
Abstract:Glutaryl-7-aminocephalosporanic acid (GL-7-ACA) acylase isan enzyme that converts GL-7-ACA to 7-aminocephalosporanic acid, a starting material for semisynthetic cephalosporin antibiotics. In this study, optimal conditions for the immobilization of GL-7-ACA acylase were determined by experimental observations and statistical methods. The optimal conditions were as follows: 1.1 M phosphate buffer (pH 8.3) as buffer solution, immobilization temperature of 20°C, and immobilization time of 120 min. Unreacted aldehydegroups were quenched by reaction with a low-molecular-weight material such as l-lysine, glycine, and ethanolamine after immobilization in order to enhance the activity of immobilized GL-7-ACA acylase. The activities of immobilized GL-7-ACA acylase obtained by using the low-molecular-weight materials were higher than those obtained by immobilized GL-7-ACA acylase not treated with low-molecular-weight materials. In particular, the highest activity of immobilized GL-7-ACA acylase was obtained using 0.4% (v/v) ethanolamine. We also investigated the effect of sodium cyanoborohydride in order to increase the stability of the linkage between the enzyme and the support. The effect on operational stability was obvious: the activity of immobilized GL-7-ACA acylase treated with 4% (w/w) sodium cyanoborohydride remained almost 100% after 20 times of reuse.
Keywords:Immobilization  glutaryl-7-aminocephalosporanic acid acylase  statistical method  ethanolamine  sodium cyanoborohydride
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号