首页 | 本学科首页   官方微博 | 高级检索  
     


Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function
Authors:F. Varnik  J. Baschnagel  K. Binder  M. Mareschal
Affiliation:(1) CECAM, ENS-Lyon, 46 Allée d"rsquo"Italie, 69007 Lyon, France;(2) Institut Charles Sadron, 6 rue Boussingault, 67083 Strasbourg, France;(3) Institut für Physik, Johannes-Gutenberg Universität, 55099 Mainz, Germany
Abstract:Results of large-scale molecular-dynamics simulations of a supercooled polymer film are presented (F. Varnik, J. Baschnagel, K. Binder, J. Phys. IV 10, 239 (2000)). The dynamic and static properties of the system are studied for a wide range of film thicknesses (from 3 to about 55 times the bulk radius of gyration) and temperatures (from the normal liquid state to the supercooled region). The system is confined between two completely smooth and purely repulsive walls. Motivated by the previous results on the enhancement of the local relaxation dynamics due to the confinement (F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002); Phys. Rev. E. 65, 021507 (2002)), we now study the effect of the walls on the dynamics of the Rouse modes. It has been reported from Monte Carlo studies of the Bond Fluctuation Model (BFM) that, contrary to the enhancement of the ldquocage dynamicsrdquo (exemplified by a faster relaxation of the incoherent scattering function in the film), Rouse modes exhibit a slower relaxation in the confined system (C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 197 (2001)). However, we do not observe such a discrepancy for our continuum model: At a given temperature, the relaxation of a given Rouse mode is faster in the film than in the bulk in accordance with the acceleration of the dynamics around the cage.Received: 1 January 2003, Published online: 21 October 2003PACS: 61.20.Ja Computer simulation of liquid structure - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 64.70.Pf Glass transitions
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号