首页 | 本学科首页   官方微博 | 高级检索  
     


Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics
Authors:Yanfeng Miao  Yuetian Chen  Haoran Chen  Xingtao Wang  Yixin Zhao
Affiliation:School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240 China.; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092 China
Abstract:The chemical instability of metal halide perovskite materials can be ascribed to their unique properties of softness, in which the chemical bonding between metal halide octahedral frameworks and cations is the weak ionic and hydrogen bonding as in most perovskite structures. Therefore, various strategies have been developed to stabilize the cations and metal halide frameworks, which include incorporating additives, developing two-dimensional perovskites and perovskite nanocrystals, etc. Recently, the important role of utilizing steric hindrance for stabilizing and passivating perovskites has been demonstrated. In this perspective, we summarize the applications of steric hindrance in manipulating and stabilizing perovskites. We will also discuss how steric hindrance influences the fundamental kinetics of perovskite crystallization and film formation processes. The similarities and differences of the steric hindrance between perovskite solar cells and perovskite light emission diodes are also discussed. In all, utilizing steric hindrance is a promising strategy to manipulate and stabilize metal halide perovskites for optoelectronics.

Manipulation on steric hindrance can influence the fundamental kinetics of perovskite crystallization and film formation, therefore stabilizing and passivating perovskite structures, and promoting the commercialization of stable perovskite devices.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号