Abstract: | The electrical resistivity of a hydrogenated LaNi5 thin film has been investigated as a function of temperature in vacuum and in hydrogen. While the film was heated in vacuum for the first time, the change in resistivity exhibited different characteristics during different ranges of temperatures due to the competition of two effects owing to the lattice scattering of conductive electrons and the number of them. The resistivity had a sharp drop near 600 K, which originates from the formation of high conducting lanthanum hydride and nickel due to a reaction between the dissolved hydrogen and LaNi5. The change in resistivity was not repeatable during the successive heating and cooling processes. When the film was heated under a hydrogen atmosphere, a drop in resistivity occurred near 700 K due to the reaction between LaNi5 and the hydrogen atmosphere. The film showed a linear temperature dependence of receptivity with completeness of the reaction. It was found that the reaction was irreversible. The film lost the ability of hydrogen absorption after the reaction, and it had a phase change from LaNi5 to LaH and Ni. This result was supported by X-ray diffraction patterns. |