首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study on the smoke temperature evolution in a polyethylene (PE)-lined compartment on fire
Authors:Gong  Junhui  Wang  Di  Shi  Long  Liu  Xuanya  Chen  Ye  Zhang  Guomin
Affiliation:1.College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu, China
;2.Key Laboratory of Building Fire Protection Engineering and Technology of MPS, Tianjin, 300381, China
;3.Department of Fire Protection Engineering, University of Maryland, College Park, MD, 20742, USA
;4.Civil and Infrastructure Engineering Discipline, School of Engineering, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
;
Abstract:

Smoke temperature evolution in the upper layer of compartment fire, which is critical for the prediction of potential flashover, was experimentally investigated in a real building. Three-millimeter polyethylene (PE) slabs attached on the internal walls were employed as the lining material to address the effect of the melting and combustion of the lining material on the smoke temperature. A corner gasoline pool fire was utilized as the fire source. Two thermocouple trees, mounted vertically at the center and the open door, and a high-definition camera were utilized to record the smoke temperature history and experimental video. Meanwhile, some furniture was loaded to study its enhancement feature on fire intensity. Heat release rates (HRRs) at different stages were analyzed based on MQH method (McCaffrey, Quintiere and Harkleroad) and pool fire theory. Smoke temperature was estimated through an improved MQH correlation considering the melting of the PE slabs and an empirical model, BFD curve (Barnett in Fire Saf J 37: 437–463, 2002) combined. The results show that both the maximum HRR and smoke temperature, 925.91 kW and 491.7 °C, are lower than the critical values of flashover. The PE lining greatly intensifies the fire power and the resulting smoke temperature compared with the ones in noncombustible wall scenario. Combustion of the molten PE flowing down from the walls would lead to a secondary peak in smoke temperature curve, which is rarely considered in previous work.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号