首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Excited states of gaseous ions. V. The predissociation of the h2o+ ion
Authors:AJ Lorquet  JC Lorquet
Institution:Institut de Chimie de l''université de Liege. Sart Tilman, B-4000 Liége I, Belgium
Abstract:The B?2 state of H2O+ is predissociated twice. First, by the ã4B1 state, giving OH+ + H fragments via spinorbit coupling interaction. Secondly, by a2A state, giving H + OH fragments via spin-orbit coupling and Coriolis interactions. A vibrational analysis of the photoelectron band of the B? state of H2O+ and D2O+ is carried out. This provides the vibrational frequencies of the H2O+, D2O+ and HDO+ ions, as well as a vibrational assignment of the peaks. The H2O+ ion in its B?2B2 state is found to have a OH bond length of 1.12 A and a valence angie of 78°.In order to describe the unimolecular fragmentation process, a distinction is introduced between the totally symmetric, optically active vibrational modes, and the antisymmetric ones which are coupled to the continuum. The former are supplied with photon or electron impact energy, but only the latter are chemically efficient. The dynamics of the dissociation process depends therefore on the couplings among normal modes. This is studied in the framework of two models. In Model 1, it is assumed that, as a result of the anharmonicity of the potential energy surface, only even overtones of the antisymmetric vibration are excited by Fermi resonance. In Model II, excitation of the odd overtones is provided by vibronic coupling. Model II is in better agreement with experiment than Model I. Calculated and experimental results have been compared on the following points: isotopic shift on the appearance potential of OH+ and OD+ ions, shapes of the photoionization curves, fragmentation pattern with 21 eV photons, presence of a unimolecular metastable transition, production of O+ ions. All the vibrational levels situated above the dissociation asymptote are totally predissociated. Autoionization is shown in this case to contribute only to the formation of molecular H2O+ ions, and not to that of the OH+ fragments. For 21 eV electrons, the contribution due to direct ionization is calculated to represent about 25% of the total cross section, the rest being due to autoionization.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号