首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Connected kernel methods in nuclear reactions: (III). Effective interactions
Authors:Edward F Redish
Institution:Service de Physique Théorique, Centre d''Etudes Nucléaires de Saclay, BP no. 2, 91190 Gif-sur-Yvette, France
Abstract:The recently derived connected kernel equation (CKE) for N-body scattering operators is applied to direct nuclear reactions. A spectral representation is derived for the kernel of the CKE in order to obtain manageable approximations. This allows the kernel to be split into orders corresponding to the propagation of different numbers of bound clusters. By formally solving one part of the kernel at a time, the CKE is written as a hierarchy of nested equations in increasingly many variables. The first equation of this hierarchy is a set of coupled channel Lippmann-Schwinger equations coupling together all two-cluster channels. These equations reduce to the usual coupled channel equations for inelastic scattering and to the coupled channel Born approximation for rearrangement reactions when weak coupling assumptions are made. The second equation of the hierarchy is a two-variable integral equation for the effective interactions appearing in the coupled channel equations. The driving terms and kernel of this integral equation are obtained from the third equation of the hierarchy which is a three-variable integral equation and so forth. The use of the spectral expansion results in a renormalized theory in the sense that the bound state and reaction problems are separated. This permits the inclusion of nuclear models in the theory in a straightforward manner. The hierarchy is applied to a particular example, that of nucleon-nucleus scattering. For this case the hierarchy is truncated at the level allowing no more than three clusters in the continuum. By suppressing exchange and keeping only one-particle transfer and single-nucléon knockout channels, a set of equations for the optical potentials and transfer operators is obtained. These equations provide a three-body treatment of the single scattering approximation to the optical potential. Iteration of the equations yields the usual single scattering approximation in first order including three-body off-shell effects. After suppression of Fermi motion and off-shell effects, the standard impulse approximation is recovered. Modifications of the method for other cases are discussed and other possible applications suggested.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号